
Ethical Student Hackers
Introduction to Web App Hacking

Difficulty: Novice

● The skills taught in these sessions allow identification and exploitation of security vulnerabilities in
systems. We strive to give you a place to practice legally, and can point you to other places to
practice. These skills should not be used on systems where you do not have explicit permission
from the owner of the system. It is VERY easy to end up in breach of relevant laws, and we can
accept no responsibility for anything you do with the skills learnt here.

● If we have reason to believe that you are utilising these skills against systems where you are not
authorised you will be banned from our events, and if necessary the relevant authorities will be
alerted.

● Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you
are able to confirm you are allowed to.

The Legal Bit

● Before proceeding past this point you must read and agree to our Code of Conduct - this is a
requirement from the University for us to operate as a society.

● If you have any doubts or need anything clarified, please ask a member of the committee.

● Breaching the Code of Conduct = immediate ejection and further consequences.

● Code of Conduct can be found at
https://shefesh.com/downloads/SESH%20Code%20of%20Conduct.pdf

Code of Conduct

Overview

1. Methodologies

2. Attacks

a. SQLi

b. XXS

c. LFI

3. Tools

a. GoBuster

b. WFuzz

c. Curl

d. Burp Suite

4. Challenge time!

These slides are available at

shefesh.com/sessions if you want to

follow along!

What are we trying to

achieve?

● Read sensitive files

● Find hidden pages

● Access what you’re not

supposed to

● Ultimate goal - Code execution!

Methodologies

What do we need to look for?

● User input

● Web app technologies

● Dependency vulnerabilities

● Anything you can exploit!

SQL - Structured query language

Used to retrieve or modify data in databases

SELECT [fields] FROM [table] (WHERE [condition]);

SELECT * FROM users WHERE admin = true;

SQLi

SELECT INSERT INTO DELETE

UNION UPDATE

SQL Injection - Exploitation of SQL queries with unsanitized user input

In-band SQLi

● Attacker is able to use the same communication channel to both launch the attack and gather
results

Inferential SQLi

● attacker is able to reconstruct the database structure by sending payloads, observing the web
application’s response and the resulting behavior of the database server

Out-of-band SQLi

● an attacker is unable to use the same channel to launch the attack and gather results

SQLi

Bypassing a login form

● A login query may look like this:

○ SELECT * FROM users WHERE username = ‘$username’ AND password =

‘$password’;

● Our attack payload looks like this:

○ In the username field we enter the following: ’ OR 1=1;--

○ The query now looks like this: SELECT * FROM users WHERE username =

‘’ OR 1=1;--AND password = ‘$password’;

SQLi

Data exfiltration

● A search query may look like this:

○ ”SELECT * FROM products WHERE name LIKE ‘%” + user_input + “%’;”

● Our attack payload looks like this:

○ In the search field we enter the following: %’ UNION SELECT * FROM

users;--

○ The query now looks like this: SELECT * FROM products WHERE name

LIKE ‘%%’ UNION SELECT * FROM users;--%’;

SQLi

Protecting from SQLi

● Concatenation, input is executed as code

$query = ”SELECT * FROM products WHERE name = $user_input;”;
$result = mysql_query($conn, $query);

● Sanitised data using parameterization, input is executed as text

$db = connect_db();
$stmt = $db->prepare(”SELECT * FROM products WHERE name = ?;”);
$stmt->bind_param('s', $user_input);
$stmt->execute();

SQLi

Example in PHP with MySQL

Cross Site Scripting (XSS) - Sending of malicious code to websites via unsanitized
user input

XSS

● DOM - an element in the Document Object Model is

changed by a feature on the page - e.g. a button

● Reflected - the payload is delivered in the URL and

then rendered on the page - e.g. a search bar

● Stored - the payload is saved to a persistent

storage location and later rendered - for example,

a commenting system

Self retweeting XSS Attack in Tweetdeck

DOM XSS

Select your language:
<select><script>
document.write("<OPTION
value=1>"+decodeURIComponent(do
cument.location.href.substring(docu
ment.location.href.indexOf("default="
)+8))+"</OPTION>");
document.write("<OPTION
value=2>English</OPTION>");
</script></select>

XSS

Invoked with
http://www.some.site/page.html?def
ault=French

XSS Attack
http://www.some.site/page.html?def
ault=<script>alert(document.cookie)<
/script>

Reflected XSS

<% String eid =

request.getParameter("eid"); %>

Employee ID: <%= eid %>

Display employee id entered into

HTTP request

XSS

Usually used in phishing

Send via phishing
http://www.some.site/page.html?eid
=<script>alert(document.cookie)</sc
ript>

Stored XSS

$sql = "INSERT INTO MyGuests

(firstname, lastname, email)

VALUES ($_GET[‘firstname’],

$_GET[‘lastname’], $_GET[‘email’])";

Enter guest into database

<?php echo(“<p>” . $email . “</p>”); ?>

XSS

Invoked with
http://www.some.site/add_guest?firs
tname=John&lastname=Doe&email=t
est@test.com

XSS Attack
http://www.some.site/add_guest?firs
tname=John&lastname=Doe&email=
<script>alert(document.cookie)</scri
pt>

Preventing XSS

DOM based XSS - HTML encoding and JavaScript encode all untrusted input

https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html#guideli
ne

Reflected & Stored XSS - Deny all untrusted data where possible, HTML encode,
attribute encode, JavaScript encode...Encode as much as possible!

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#xss
-prevention-rules-summary

XSS

Local File Inclusion (LFI) - A trick to

cause a webpage to expose or run

local files on the web-server via the

use of unsanitized user input

Usually PHP scripts

(Directory traversal if not PHP)

LFI

<?php

 $file = $_GET['file'];

 if(isset($file)) {

 include("pages/$file");

 }

 else {

 include("index.php");

 }

?>

LFI

https://cobalt.io/blog/a-pentesters-guide-to-file-inclusion

Preventing LFI

● Avoid passing user-submitted input to any filesystem

● White list of files

● Use IDs instead of file paths (reject invalid IDs)

● Do not accept characters such as .. or / or %00 etc.

● PHP function to read from directory

LFI

Brute force URIs, DNS subdomains, virtual host names, open AWS S3 buckets

Why?

● Find hidden urls

● Find hidden subdomains

● Much quicker than doing it manually

● Use common wordlists

Alternative tools: DirBuster, FeroxBuster

GoBuster

● -P password

● -U username

● -c cookies

● -m mode (dir or dns)

● -r follow redirects

● -u target URL or domain

● -v verbose

● -w path to wordlist

GoBuster

gobuster -u http://192.168.0.155/ -w
/usr/share/wordlists/dirb/common.t
xt -q -n -e

Search URL using wordlist
common.txt, don’t print banner, don’t
print status codes and use expand
mode to print full URLs

Gobuster Examples

http://129.168.0.155/
https://asciinema.org/a/102166

Brute force HTTP request fields

● Parameters

● Authentication

● Forms

● Headers

WFuzz

Fuzzing URL Parameters

wfuzz -z range,0-10 --hl 97

http://testphp.vulnweb.com/listprodu

cts.php?cat=FUZZ

Test URL with values 0-10 for cat parameter.
Hide responses with 97 lines

WFuzz

Fuzzing POST Requests

wfuzz -z

file,wordlist/others/common_pass.txt

-d "uname=FUZZ&pass=FUZZ" --hc

302

http://testphp.vulnweb.com/userinfo.

php

Test URL with wordlist data for uname and
pass parameters. Hide 302 responses

http://testphp.vulnweb.com/listproducts.php?cat=FUZZ
http://testphp.vulnweb.com/listproducts.php?cat=FUZZ
http://testphp.vulnweb.com/userinfo.php
http://testphp.vulnweb.com/userinfo.php

Curl

Command line tool for HTTP
requests

curl [PROTOCOL]://[URL]:[PORT]

curl [PROTOCOL]://[URL]:[PORT] -d
[DATA]

https://shefesh.com/wiki/fundamental-skills/to
ols-1---curl.pdf

Tools

Burp Suite

Tool for inspecting HTTP traffic,
proxy between browser and server

Default HTTP proxy - 127.0.0.1:8080

● Enable a proxy in your browser
● Requests show in Burp Suite
● Request held until forwarded or

intercept is disabled

https://shefesh.com/wiki/fundamental-ski
lls/web-3---burp-suite.pdf

sesh : seshdemo!

http://44.192.5.204/DVWA/

Join the
Committee
EGM 11th October 2021

Please contact ethicalhackers@sheffield.ac.uk if
you are interested!

Positions available…

Publicity Officer

Manage social media accounts for the society
and create advertising materials.

General Member

Focus on helping other committee members
and contributing to creating content to
educate our members.

mailto:ethicalhackers@sheffield.ac.uk

Upcoming
Sessions

What’s up next?
www.shefesh.com/sessions

Automation in Cybersecurity + EGM: 11/10/21

19:00 - 20:30 Arts Tower LT01

Yorkshire & Humber Regional Organised Crime

Unit (Guest Talk) 18/10/21 19:00 - 20:30

Location Hicks LT05

Operating System Security 25/10/21 19:00 -

20:30 Location TBC

Reconnaissance 01/11/21 19:00 - 20:30

Location TBC

Any Questions?

www.shefesh.com
Thanks for coming!

